
1

Kallisti MUD

Mprog/Oprog Handbook, Version 1.0

September 2019

* * *

www.kallistimud.com

http://www.kallistimud.com/

2

Contents

I OVERVIEW .. 5

II TERMINOLOGY ... 5

III OLC ... 6

MPEDIT .. 6
HEADER .. 6
BODY .. 7

MPSTAT ... 7
MPSAVE ... 7
MOBPROGPERCENT ... 7
OPEDIT ... 8

HEADER .. 8
BODY .. 8

OPSTAT .. 9
OPTRIGGER .. 9

VI HEADER OPTIONS – TRIGGERS .. 10

ACT_PROG/ACT_PROG ... 10
MPROG .. 11

ALLGREET_PROG/ALLGREET_PROG .. 11
MPROG .. 11

ATTACK_PROG/ATTACK_PROG .. 11
MPROG .. 11
OPROG ... 12

BIRTH_PROG/BIRTH_PROG ... 12
MPROG .. 12
OPROG ... 12

BRIBE_PROG/BRIBE_PROG .. 12
MPROG .. 12

CAST_PROG/CAST_PROG .. 13
MPROG .. 13

COMMAND_PROG/COMMAND_PROG ... 13
MPROG .. 13
OPROG ... 15

DEATH_PROG/DEATH_PROG ... 15
MPROG .. 15

DROP_PROG/DROP_PROG .. 15
OPROG ... 15

ENTRY_PROG/ENTRY_PROG .. 15
MPROG .. 16

FIGHT_PROG/FIGHT_PROG ... 16
MPROG .. 16
OPROG ... 16

GET_PROG/GET_PROG ... 16
OPROG ... 17

GIVE_PROG/GIVE_PROG ... 17
MPROG .. 17

GREET_PROG/GREET_PROG .. 18
MPROG .. 18
OPROG ... 18

3

HITPERCENT_PROG/HITPRCNT_PROG.. 18
MPROG .. 19

PULL_PROG/MANIP_PROG .. 19
OPROG ... 19

PULSE_PROG/PULSE_PROG ... 19
MPROG .. 19

QCOMPLETE_PROG/QCOMPLETE_PROG .. 19
MPROG .. 19

RANDOM_PROG/RAND_PROG .. 20
MPROG .. 20
OPROG ... 20

REMOVE_PROG/REMOVE_PROG ... 20
OPROG ... 20

SAC_PROG/SAC_PROG ... 20
OPROG ... 20

SPEECH_PROG/SPEECH_PROG .. 21
MPROG .. 21
OPROG ... 21

TIME_PROG/TIME_PROG .. 21
MPROG .. 21

WEAR_PROG/WEAR_PROG ... 21
OPROG ... 22

VI BODY OPTIONS ... 22

MPVARIABLES .. 22
IFCHECKS .. 22

ACTORTARGET, MOBTARGET, OBJTARGET .. 23
AFFECTEDBYSPELL ... 23
AGE .. 23
CANSEE .. 23
CARRIESOBJ, WEARSOBJ, HASOBJ ... 23
CLANNUM, CLANRANK .. 24
CLASS ... 24
CMD, CMDARG, CMDQUEUELEN ... 24
DRUNK, HUNGRY, INSANE, STONED, THIRSTY, WIRED .. 25
GOLD .. 25
HIT, MAX HIT, HIT %, MANA, MAX MANA, MANA %, MOVE, MAX MOVE, MOVE % .. 25
INOBJ, INROOM, INZONE ... 25
ISCHARMED ... 25
ISEXITCLOSED, ISEXITLOCKED .. 25
ISFIGHTING .. 26
ISFOLLOWING, ISLEADER ... 26
ISGOOD, ISEVIL, ISNEUTRAL ... 26
ISGROUPED .. 26
ISMOUNTED ... 26
ISNPC, ISPC, ISIMMORT ... 26
ISOUTLAW.. 26
ISQUESTEDBYMOB ... 26
ISPTHIEF ... 26
ISZONEEMPTY, MOBSINZONE .. 27
LEGENDPOINTS or HEROPOINTS, NOBPOINTS or NOBLEPOINTS .. 27
LEVEL ... 27
MOBHERE, MOBZONE ... 27

4

MOBSPRESENT ... 27
MOBNEXIST, OBJNEXIST .. 27
NAME ... 27
NUMFOLLOWERS ... 28
OBJHERE, OBJSINZONE .. 28
OBJTYPE ... 28
OBJVAL 0 TO 5 ... 28
PLAYERSPRESENT ... 28
POSITION ... 28
QPOINTS .. 28
RACE, SEX ... 29
RAND, RANDOMNUM .. 29
SIZE .. 29
STRENGTH, DEXTERITY, CONSTITUTION, WISDOM, INTELLIGENCE, LUCK, CHARISMA ... 29
TIMEHOUR, TIMEDAY, TIMEMONTH, TIMEYEAR .. 29
VAR .. 29
VNUM .. 29

MPCOMMANDS ... 30
MPASOUND ... 30
MPAT ... 30
MPCOINS ... 30
MPDAMAGE, MPAREADAMAGE, MPDAMAGEAROUND ... 30
MPDELAY ... 31
MPDOOR .. 31
MPECHO, MPECHOAT, MPECHOAROUND, MPECHOZONE ... 31
MPFLUSH ... 31
MPFORCE ... 31
MPGIVE .. 32
MPGOTO, MPGORANDOM .. 32
MPJUNK ... 32
MPKILL ... 32
MPMLOAD, MPOLOAD .. 32
MPOPEN, MPCLOSE ... 33
MPPURGE, MPVPURGE ... 33
MPQSTART, MPQEND .. 33
MPRESTORE ... 33
MPROOM ... 33
MPSET .. 33
MPSETSKILL .. 34
MPSTAT, OPSTAT ... 35
MPTRANSFER ... 35
MPTRIGGER, OPTRIGGER ... 35
MPVAR ... 35
MPZRESET .. 35
SILENTLY .. 36

XIV QUICK REFERENCE .. 36

XV CREDITS ... 38

5

I OVERVIEW

MOBPROGS are an OLC (on-line-coding) feature that allows builders to create and assign small, or complex, programs to

mobs, without needing to write actual code, or find an available and willing coder. Individual mobs can have several

mobprogs, or none. (All single examples of mobs with a shared Vnum have the same set of mobprogs). (Not everything that

a coder can write can be duplicated by mobprogs, but many common features can easily be created, and mobprogs can be

quite complicated, and can also be much easier to understand, and troubleshoot, than pages of code.)

Mobprogs or mprogs allow a mob to react to events on the mud, such as being bribed, one or more players entering their

room, spells being cast on them, being in a fight, someone saying the secret word, what time it is, being slapped or farted at

or tickled, being low on hits, dying, and so forth. Similarly, object progs or oprogs allow objects to interact with players.

The events that TRIGGER a mprog or oprog are versatile and can be used in clever ways once they are understood. The

HEADER tells the mud what type of event to react to (for example: speech, act, or fight), what specific example of the type

(in some cases, for example: an actprog that only responded to tickling, or a speechprog that reacted to 'heh'), what % of the

time to react to the trigger, and other information specific to the type of trigger. Triggers are explored more fully in the

section VI for Header Options and in help MPTRIGGERS and OPTRIGGERS in the mud.

Once a mprog is triggered, it executes an action or series of actions. Mobs can execute almost any action a player can, many

godcommands, and other actions that a players cannot. These actions are explored more fully in MPCOMMANDS.

Maybe you don't want the mobprog to happen every time the trigger condition is met. Perhaps the event occurs too often, or

you want the mob to react unpredictably, or rarely. Most mobprogs can be assigned a % chance of triggering, (part of the

HEADER) and any mobprog can be assigned various limits (part of the BODY).

 (The mobprog's HEADER can be edited.) The BODY (explored more fully in MPCOMMANDS and MPIFCHECKS)

tells the mud what to do after the trigger condition is met, and what additional conditions to check for. (The mobprog's

BODY can be edited.)

Maybe you don't want to react to everyone that enters your room, or fights you, or says the secret word, or bribes you,

though. Maybe it only works for elves, or monks, or remorts, or females, or when dispel magic is cast? This is where

IFCHECKS come into play. IFCHECKS allow the mobprog to test for certain conditions and react only if the conditions

are met. (This includes a Random ifcheck that allows the prog to be limited to only some % of the time the mptrigger

condition is met). One mobprog can contain more than one ifcheck, with different consequences, and ifchecks can also be

combined using AND and/or OR, and can use ELSE, and BREAK, and can also be nested. (Logical thinking and good

design become very important.)

In many cases, the mobprog can perform actions, but needs to know who the action is to be performed 'on.' Obvious choices

include 'everyone in the room,' 'the person who triggered the mobprog,' 'the mob itself,' 'a nearby door,' 'a random player in

the room,' 'some object in the mob's inventory,' or 'somebody else.' This is where MPVARIABLES come into play.

(Syntax is very important). Variables are used to identify the target of an action and are also used within messages

generated by the mobprog.

Both the HEADER and BODY of a mobprog can be edited. In addition, you can re-organize mobprogs, add or insert new

ones, delete them, review them, and (this is important!) save them. This is explored more fully in MPEDITING.

It is worth noting and remembering that mobprogs and ifchecks use % differently. For example, the ifcheck 'if rand(40)'

means 40% of the time, and the ifcheck 'if hitpercent(60)' means when current hits go below 60% of maxhits, BUT, some

mobprogs accept a number from 1 to 100 that is not the 'actual percentage,' but instead generates a number in the 1 to 1000

range, for example, mobprog 'rand_prog 70' means 'checks every pulse against a 586/1000 chance.' And some mobprog

types do not use a % at all (but can still be limited within the body of the prog by using an 'if rand(%)' check).

II TERMINOLOGY

Here are some common terms used in building and in this handbook:

6

Mob Mobile. A monster. Can also refer to the mob file.

MobProgs Mobile programs. Similar to Spec Procs but can be edited directly on the mob rather than compiled

in the in mud’s code itself. Also called MProgs.
NPC Short for 'non-player character.' Used synonymously with 'mob.'

ObjProg or Oprog Object programs. Similar to Spec Procs but can be edited directly on the object rather than in the

mud’s code itself. Also called OProg.

PC Short for 'player character.'

Spec Proc Short for 'special procedure' the special routines that the MUD should use with a mob, obj or room.

III OLC

Kallisti uses the Online Creator (OLC) for almost all building work. This is because OLC is "more visual" to some people;

but more importantly, it offers immediate feedback. You can build your mob or object and create your mprog immediately.

It also eliminates the need to remember the correct formatting.

The basic olc commands are:

MPEDIT This command allows you to edit a specific mob’s mprogs.

MPSTAT This command shows you a mob’s mprogs without you having to be in the editor.

MPTEST The command tests something.

MPSAVE This command saves all the mobprog changes.

MOBPROGPERCENT This command gives you the actual percentage chance of an mprog firing depending on the

number provided.

OPEDIT This command allows you to edit a specific object’s oprogs.

OPSTAT This command shows you an object’s oprogs without you having to be in the editor.

OPTRIGGER This command triggers an oprog to run.

MPEDIT

The mpedit command allows you to edit a specific mob's mobprogs. You must be mobedit-ing the mob (Mobedit

<Vnum>). You can Mpedit save OR Msave to save all changes and update the progs on your mobs.

The mobprog consists of the HEADER, which identifies the type of event that triggers the mobprog, and necessary

parameters, and the BODY, which identifies what other conditions to check and what actions to perform.

HEADER

Usage: mpedit <command> [parameters]

Note: The parameters, and the number and order of them, vary according to the command.

Usage: mpedit <list | add | delete | insert | edit | save | copy | header | done>

To create or edit an mprog you need to be in medit on the mob.

• Use mpedit list to list all mprogs for the mob you are medit-ing.

• Use mpedit add <progtype> [parameters] to add a mprog to the end of the mprog list. The

[parameters] depend on the progtype chosen

• Use mpedit delete <prognumber> to delete an mprog from the list.

• Use mpedit insert <prognumber> <progtype> [parameters] to insert a mprog in the list. The

[parameters] depend on the progtype chosen.

• Use mpedit edit <prognumber> to edit the command list of an existing mprog.

• Use mpedit copy <vnum to copy from> <prognumber of the copy mob> to copy an mprog

from another mob. Adds this mprog to the end of the list of the mob you are editing.

• Use mpedit header <prognumber> <progtype> [parameters] to replace an mprog header

7

completely.

When you are done creating and editing your rooms:

• Use mpedit save to save the current mprog changes to the mob file and update progs on mobs.

• Use mpedit done to exit from the mpeditor without saving.

Note: After exiting the editor buffer, you must still mpedit save, (or msave), to save the prog to the .mob file. This also

updates all mobs with the prog. You can save an 'empty' mobprog to a prognumber, then access it later with mped edit.

BODY

After entering the editor, (mpedit edit <prognumber>. You must first be medit-ing the mobVnum.), you can manipulate the

body of the mobprog.

Note: The editor will overwrite the line you are on.

Begin entering your text now (/? = help /s = save /c = clear /l = list)

(The line below is 78 characters - press ENTER before exceeding that length)

/? display this help list

/l [from] [to] list buffer (or part of it), with line numbers

/ [from] [to] list buffer (or part of it), with line numbers

/n [from] [to] list buffer (or part of it), without line numbers

/c clear entire edit buffer

/d <line #> delete specified line or current line if none specified

/g <line #> goto line specified

/<line #> goto line specified

/i <line #> insert line before line specified or before current line if none

specified

/r <old> <new> global search and replace

/a abort editing without saving

/! <command> execute external command outside of editor

/s save buffer and exit editor

Note: After exiting the editor buffer, you must still mpedit save, (or msave), to save the prog to the .mob file. This also

updates all mobs with the prog.

MPSTAT

This command can give you information about an existing mob’s mprogs using mpstat <mob name> | <mob #>.

An MPSTAT of a beastly fido, mob number 3062 will look like this:
Name: a beastly fido Vnum: [3062]

Short description: a beastly fido

Hp: 11/11 Mana: 21/21 Move: 81/81

Lv: 1 Class: MOB (0) Align: -200 AC: 9 Gold: 0 Exp: 5

1> act_prog pats 100

em wags his tail happily.

MPSAVE

Used when you are done editing the mob’s mprogs and want to save them.

MOBPROGPERCENT

Usage: mobprogpercent <number>

8

Supply a number from 1-100 and I'll tell you the actual percentage chance of firing in a mobprog.

SPECIAL NOTE: The mud command mobprogpercent <#> will return the actual mobprog percent value for a given # (1-

100), so you don't have to do the math or consult a chart. The formula is [Y=X^1.5].

OPEDIT

The opedit command allows you to edit a specific object’s progs. You must be oedit-ing the object (oedit <Vnum>). You

can Opedit save OR Osave to save all changes and update the progs on your mobs.

The objprog consists of the HEADER, which identifies the type of event that triggers the objprog, and necessary

parameters, and the BODY, which identifies what other conditions to check and what actions to perform.

HEADER

Usage: opedit <command> [parameters]

Note: The parameters, and the number and order of them, vary according to the command.

Usage: opedit <list | add | delete | insert | edit | save | copy | header | done>

To create or edit an mprog you need to be in medit on the mob.

• Use opedit list to list all oprogs for the mob you are oedit-ing.

• Use opedit add <progtype> [parameters] to add a oprog to the end of the oprog list. The

[parameters] depend on the progtype chosen

• Use opedit delete <prognumber> to delete an oprog from the list.

• Use opedit insert <prognumber> <progtype> [parameters] to insert a oprog in the list. The

[parameters] depend on the progtype chosen.

• Use opedit edit <prognumber> to edit the command list of an existing oprog.

• Use opedit copy <vnum to copy from> <prognumber of the copy obj> to copy an oprog

from another mob. Adds this oprog to the end of the list of the obj you are editing.

• Use opedit header <prognumber> <progtype> [parameters] to replace an oprog header

completely.

When you are done creating and editing your rooms:

• Use opedit save to save the current oprog changes to the obj file and update progs on objs.

• Use opedit done to exit from the opeditor without saving.

Note: After exiting the editor buffer, you must still opedit save, (or osave), to save the prog to the .obj file. This also

updates all objs with the prog. You can save an 'empty' objprog to a prognumber, then access it later with oped edit.

BODY

After entering the editor, (opedit edit <prognumber>. You must first be oedit-ing the obj Vnum.), you can manipulate the

body of the objprog.

Note: The editor will overwrite the line you are on.

Begin entering your text now (/? = help /s = save /c = clear /l = list)

(The line below is 78 characters - press ENTER before exceeding that length)

/? display this help list

/l [from] [to] list buffer (or part of it), with line numbers

/ [from] [to] list buffer (or part of it), with line numbers

9

/n [from] [to] list buffer (or part of it), without line numbers

/c clear entire edit buffer

/d <line #> delete specified line or current line if none specified

/g <line #> goto line specified

/<line #> goto line specified

/i <line #> insert line before line specified or before current line if none

specified

/r <old> <new> global search and replace

/a abort editing without saving

/! <command> execute external command outside of editor

/s save buffer and exit editor

Note: After exiting the editor buffer, you must still opedit save, (or osave), to save the prog to the .obj file. This also

updates all objs with the prog.

OPSTAT

This command can give you information about an existing object’s oprogs using opstat <obj name> | <obj #>.

An OPSTAT of a water dragon, mob number 22517 will look like this:
Name: a statue of a water dragon Vnum: [22517]

Short description: a statue of a water dragon.

Long description: A stone replica of what seems like a sea monster is

constructed here.

1> greet_prog 100

mpechoat $n Sensing the presence of a life form, the spirit the water speaks to

you from its statue.

silently mpmload 22526

OPTRIGGER

This command triggers an oprog to run. Usage: optrigger <vnum> <prognumber>

10

VI HEADER OPTIONS – TRIGGERS

Triggers are the various choices of types of mud events that initiate mobprogs and objprogs. Examples could include

speaking, telling something to the mob, performing a certain action or social, manipulating an item, a certain hour of the

day, being in a fight, getting hit by a certain spell, and many others. Some triggers respond when an event occurs, some

check for the event at each pulse, some check at each round of fighting, etc.

MPTRIGGER types:

Act reacts to action messages.

Allgreet reacts when a PC or an NPC enters the mob's room.

Attack reacts when a mob begins fighting a new target.

Birth reacts when the mob is loaded into the mud.

Bribe reacts when the mob is given coins.

Cast reacts if a PC casts the assigned spell in the mob's room.

Command reacts to commands typed by players.

Death reacts when the mob dies.

Entry reacts when the mob enters a room.

Fight reacts during fights.

Give reacts when the mob is given an item.

Greet reacts when a PC enters the mob's room.

Hitpercent reacts when below the assigned % of maxhits.

Pulse reacts at an assigned pulse.

Random reacts randomly, according to the assigned %.

Speech reacts to speech messages.

Time reacts at an assigned hour.

Position Not implemented. Reacts to a mob position. Pos_prog.

Qcomplete reacts when the quest is finished

OPTRIGGER types:

Attack triggers when the object is used to attack

Birth triggers when the object is loaded into the mud

Command see mprog help for command triggers (same syntax)

Drop triggers when you drop the item

Fight checks every combat pulse

Get triggers when you get the object

Greet triggers when someone enters the room

Pull triggers when you pull/push/turn/press the item

Random triggers at a random time

Remove triggers when you remove the item

Sac triggers when you sacrifice the object

Speech see mprog help for speech triggers (same syntax)

Wear triggers when you wear the item

Act Not implemented. see mprog help for act triggers (same syntax)

Close Not implemented. triggers when an object is closed. Close_prog

Damage Not implemented. triggers when an object takes damage. Damage_prog

Enter Not implemented. triggers when an object is entered. Enter_prog

Examine Not implemented. triggers when look or examine the item. Exa_prog

Open Not implemented. triggers when the object is opened. Open_prog

Repair Not implemented. triggers when you repair the object. Repair_prog

Use Not implemented. triggers when you use the item. Use_prog

ACT_PROG/act_prog

Act: responds to action messages sent by the mud (same as the messages sent to players), that contain the specified keyword

or text string. Mainly used for poses, socials, spell messages, and combat text. (Does not respond to say, tell, ask, whisper,

or emote which are the domain of speechprog. It also does not respond to communication channels.)

11

MPROG

Actprogs trigger when the mob is the victim of a message, so you can make a mob react to things like, 'licks you', 'You

notice the spells wearing off too fast to notice', 'critically vaporizes you', and so on.

< > mpedit add act <text string> (Note: No assigned %.)

Examples:
act_prog licks you

tickle $r

The mob will tickle a random player in the room if you lick him.

act_prog licks

giggle

The mob will giggle if anyone in the room licks someone else, or

the mob, or themselves.
act_prog debris from the large tremor

mpforce $n flee

The mob will force a player to flee if the player casts earthquake.

Note: This player must be in the room with the mob, visible to the

mob, and lower level than the mob for mpforce to work.
act_prog critically vaporizes you

if rand(50)

say That time it hurt.

Endif

About half of the times anyone critically vaporizes the mob, it will

comment on it.

ALLGREET_PROG/allgreet_prog

Allgreet: Tests the prog when a PC or an NPC enters the mob's room. (Will not fire if the mob is in combat).

MPROG

< > mpedit add allgreet <#> (# ranges from 1-100 but represents a range of 1-1000.)

Example:
allgreet_prog 100

say Welcome to the Dwarven Digs, $N!

Every time a mob or a player enters this mob's room, he will

welcome them by name.

ATTACK_PROG/attack_prog

Attack: Tests the prog once, when a mob is first attacked or drawn into a fight.

MPROG

Attack reacts when a mob begins fighting a new target.

< > mpedit add attack <#> (# ranges from 1-100 but represents a range of 1-1000.)

Examples:
attack_prog 100

if level($n) < 51

mptransfer $n 3001

endif

If a player level 50 or under attacked this mob, by any means, they

would find themselves back in the Temple before the first round of

combat.

attack_prog 63

yell Mom!! $N is going to hit me!

About 50% of the time, this mob will yell, before it has even been

hit.

Note: The prog is actually tested when the mob is assigned a new fight target, and before the first combat pulse, so, it is

possible to intercept a combat before it begins. The most common reason a mob is assigned a fight target is that a player

12

attacked the mob, but it also happens, and this progtype fires, when a mob switches, when its target is rescued, or when an

aggressive mob initiates combat. Thus, the prog does not fire when a group member joins combat, nor if a second group or

player attacked a mob that was already fighting a group or player.

OPROG

Attack triggers when the object is used to attack

< > opedit add attack <#> (# ranges from 1-100 but represents a range of 1-1000.)

BIRTH_PROG/birth_prog

Birth: Tests the prog when the mob is loaded into its zone.

MPROG

Birth reacts when the mob is loaded into the mud.

< > mpedit add birth <#> (# ranges from 1-100 but represents a range of 1-1000.)

Examples:
birth_prog 100

yell I'm back!!!
This prog always alerts anyone in the area that this mob has

repopped
birth_prog 100

mpsetskill 'bash' 95
This prog enables the mob to use the skill ' bash ' with a 95%

chance of success.
birth_prog 63

cast 'sanctuary'
About half the time, when this mob repops, it sancs itself.

 .

Note: If this mob has the 'cleric' disposition, it will know the sanc spell, but if it doesn't, you would have to enable the spell,

using mpsetskill, for it to work. A birthprog can also be used to adjust the assigned skills/spells in a given disposition.

Note: Enabling skills and spells can be done in any mobprog, but are usually done in a birthprog, so that it only needs to be

checked/assigned when the mob is loaded into the mud. Also note that you can limit the chance of the mob knowing a spell

(by putting a % chance on the birthprog) as well as limiting the mob's chance of using the spell succesfully.

OPROG

Birth triggers when the object is loaded into the mud

< > opedit add birth <#> (# ranges from 1-100 but represents a range of 1-1000.)

BRIBE_PROG/bribe_prog

Bribe: Tests the prog if a player gives the mob the specified number of coins, or more.

MPROG

Bribe reacts when the mob is given coins.

< > mpedit add bribe <#> (# is the number of coins.) (Note: No assigned %.)

13

Example:
bribe_prog 50000

say This is a lot of money. I'm

going to put it in a safe place.

Show yourself out. Don't go north

while I'm not looking, either, there

are plenty more guards in there.

east

mpdelay $i 20

west

If given more than 50000 coins, this mob (we are assuming that he

is a blocker for the path north) will warn you off, then leave the

door unguarded for 20 pulses.

Note: A similar way to temporarily allow players to get past a blocker mob would be to have him take a short nap.

Note: The coins don't actually go to the mob for his use. The coins go into the mob's inventory as an object. If you don't

want that, have him silently sacrifice coins. If needed, you can use mpcoins to load coins on a mob.

CAST_PROG/cast_prog

Cast: Triggers when the specified spell is cast by a player.

MPROG

Cast reacts if a PC casts the assigned spell in the mob's room.

< > mpedit add cast <spell name> (Note: No assigned %.)

Examples:
cast_prog protection from death

if rand(62)

say He'll still get you.

Endif

About half the time that anyone casts the spell 'protection from

death' in this mob's room, he will issue this warning.

cast_prog sanctuary

if actortarget($t)

cast 'dispel magic' $n

endif

When someone casts the spell 'sanctuary' in this mob's room, the

mprog checks to see if they cast it on themselves, and if so, the mob

tries to dispel them.

cast_prog drain

if mobtarget($t)

cast 'harm' $n

endif

If anyone casts drain in the room with this mob, the mprog checks

whether the spell was targetted at the mob. If it was, the mob casts

'harm' at the caster who tried to drain him.

Note: This assumes that the mob knows these spells.

Note: The mprog triggers when the named spell is cast. Spells that fail because the target already has that affect, for

example, will trigger the mprog. A 'lost concentration' will not.

COMMAND_PROG/command_prog

Command: Triggers on the specified command typed by a player.

MPROG

Command reacts to commands typed by players.

14

< > mpedit add command <type> <command> <#>

• <command> is the actual commands typed by players, such as look, get, kill, turn, emote, say, poke, cry,

cast, north, etc. It can also be used to react to 'commands' that aren't actual mud commands.

• <#> ranges from 1-100, but represents a range of 1-1000.

• <type> parameter (unlike any other mptrigger).

o Type 0: the mud executes all commands, whether they match the trigger and fire the prog or not.

o Type 1: the mud executes the command if it does NOT match the trigger and set off the prog and

eats or swallows or 'does not execute' the command if it does match the trigger.

o Type 2: the mud never executes the command.

SPECIAL NOTE: Type 2 commandprogs can be very risky. Unless options inside the prog allow, or cause, or force things

to happen, (or the prog doesn't fire 100% of the time), NOTHING that is typed in the room will or can happen. This calls

for cautious and well thought out design, which can usually be achieved in other, safer ways.

SPECIAL NOTE: Command_progs do not work in room 1200. This provides a 'safe room' to try to deal with a rogue or

runaway prog.

Examples:
command_prog 0 look 100

say What are you looking at, Buster?

slap $n

This prog is at 100%, so it always fires, if a player types the

command ' look '. Any player who looks at anything will be taunted

and then slapped. Because it is a type ' 0 ' the prog will not eat the

command, so the player will also see the description of

whatever/whoever it looked at.
command_prog 1 look 63

emote pokes you in the eyes!
About half the time, this prog will fire if a player types ' look '.

When it doesn't, the player will see whatever it looked at. When it

does fire, being a type 1, it will eat the command, and the player will

see the emote instead of the description of what it looked at. (The

room will also see the emote.)
command_prog 1 look 100

if cmdarg(0) == mobsname

mptransfer $n 26204

endif

Since it always fires and is type 1 and eats the command this prog

will never send any results to a player from a look command, but if

the player typed the exact phrase, 'look mobsname ' they would be

transferred to room 26204
command_prog 0 say 50

mpecho The parrot says, 'Bwuaaaak!

$c!'

About 35% of the time, the mob with this prog will send an echo to

the room that includes an exact quote of what a player said in the

room. (It would obviously make more sense if a parrot was in

theroom.)
command_prog 0 * 100

$C
(Note: * is supported as a 'wild card' for any command.) This mob

would mimic players in the room, performing (or trying to perform)

every action the player does.
command_prog 1 burrow 100

if cmdarg(0) == north

mpechoat $n You burrow into the

rubble and find a way through it.

mptransfer $n 20834

endif

If a player typed the phrase 'burrow north' they would see the

message and be transferred to room 20834, just as if they had found

an exit leading to that room. Because it is a type 1, the command

will not be executed. In this case, that means no 'Unknown

Command' message would be sent to the player.

command_prog 1 * 100

if cmd($n) == escapeword

mptransfer $n 1200

endif

This shows an example of leaving yourself a way to get out of a prog

you are building and testing. Any word or phrase you typed in this

room would be 'eaten,' godcommands and editing commands

included, except for escapeword, which would transfer you out of

the prog's room
command_prog 2 look 63

mpechoat $n There is a blinding

flash!

The command 'look' will never be executed in this room. About half

the time it is typed, the player will see the echo.

15

SPECIAL NOTE: Commandprogs can eat the command that is typed, or not, and then test for other conditions, and react,

or not. On the Big Wish List is a way to have a commandprog suppress the command, but then execute it (force or allow

the player to execute it) if none of the ifcheck conditions are met, or in other ways at the builder's discretion. So far, all

attempts to do this send the command back to the room, where it is caught by the commandprog again, causing a loop.

Maybe someday.

OPROG

Command see mprog help for command triggers (same syntax)

< > opedit add command <type> <command> <#>

• <command> is the actual commands typed by players, such as look, get, kill, turn, emote, say, poke, cry,

cast, north, etc. It can also be used to react to 'commands' that aren't actual mud commands.

• <#> ranges from 1-100, but represents a range of 1-1000.

• <type> parameter (unlike any other mptrigger).

o Type 0: the mud executes all commands, whether they match the trigger and fire the prog or not.

o Type 1: the mud executes the command if it does NOT match the trigger and set off the prog and

eats or swallows or 'does not execute' the command if it does match the trigger.

o Type 2: the mud never executes the command.

DEATH_PROG/death_prog

Death: Tests the prog when the mob dies.

Deathprogs clear any waitstates so any deathprog commands will be executed immediately before the mob dies.

MPROG

Death reacts when the mob dies.

< > mpedit add death <#> (# ranges from 1-100 but represents a range of 1-1000.)

Example:
death_prog 63

mpset $i position 12

mpoload 3010

silently drop bread

mpset $i position 0

50% of the time, when this mob is killed, it will load a loaf of bread

(Vnum 3010) in the room. (The item loads in the mob’s inventory.

The 'silently' command allows the mob to drop the item in the room

without any message sent to the room.)

Note: Most mpcommands will work in a deathprog, but many regular commands will not, (because the mob is dead). This

example changes the mob's position to 'standing,' to allow him to drop the bread, then returns him to position 'dead.'

DROP_PROG/drop_prog

Drop: Triggers when an item is dropped.

OPROG

Drop <%> triggers when you drop the item

< > opedit add drop <#> (# ranges from 1-100 but represents a range of 1-1000.)

ENTRY_PROG/entry_prog

16

Entry: Tests the prog when the mob enters a room and any player is in the room.

MPROG

Entry reacts when the mob enters a room.

< > mpedit add entry <#> (# ranges from 1-100 but represents a range of 1-1000.)

Example:
entry_prog 100

if islevel($n) <= 50

mptransfer $n 3001

mpat 3001 mpecho And stay out!! I

mean it, $N!!

else

mpechoat $n Take me to your leader!

Endif

When this mob enters a room that has any players in it, it tests each

one's level, and any non-nobles are transferred to the Temple (Vnum

3001) and a stern warning (by name), is echoed to the Temple. Noble

players are (individually) sent the 'leader' message.

FIGHT_PROG/fight_prog

Fight: Tests the prog each combat round, when the mob is fighting.

MPROG

Fight reacts during fights.

< > mpedit add fight <#> (# ranges from 1-100 but represents a range of 1-1000.)

Example:
fight_prog 12

mpecho The spoiled brat lights a

firecracker and throws it behind

you.$\ The firecracker explodes,

injuring you slightly from the

flying debris!

mpareadamage 2d7+18

About 42 out of 1000 combat pulses, the mob will send a message to

the room, just as if it had performed an action, then every player in the

room takes the amount of damage rolled.

Note: the special character $\ inserts a carriage return in the text string, so players in the room see this message as 2 lines of

text, immediately following each other.

OPROG

Fight <%> Not implemented? checks every combat pulse

< > opedit add fight <#> (# ranges from 1-100 but represents a range of 1-1000.)

GET_PROG/get_prog

Get <%> triggers when you get the object

17

OPROG

Get <%> triggers when you get the object

< > opedit add get <#> (# ranges from 1-100 but represents a range of 1-1000.)

GIVE_PROG/give_prog

Give: Tests the prog if a PC gives the mob the specified item.

MPROG

Give reacts when the mob is given an item.

< > mpedit add give <Vnum / text / "textstring" / * > (Note: No assigned %.)

Examples:
give_prog *

say Just what I needed, but not very

much.

drop $o

sneer

(Note: * is supported as a 'wild card' for any object.)

This prog will always trigger and will trigger on any object given to the

mob, who will comment on it, drop it, and then sneer.

give_prog bread

if rand(30)

eat $o

say Thanks, I sure was hungry.

else

drop bread

say Dork, I'm not hungry.

Endif

This prog triggers if the mob is given any item that responds to the

keyword 'bread.' About 30% of the time, the mob eats the bread and

thanks you, the rest of the time the mob drops the bread and insults

you.

Note: The prog assigns the text 'bread' to the mpvariable $o, and

responds to either one.

give_prog pipeweed

eat bread

This prog triggers if the mob is given any item that responds to the

keyword 'pipeweed.'

Note: If an item existed named 'pipeweed' that wasn't bread, and you

gave it to this mob, it would try to eat bread from its inventory.
give_prog pipeweed

eat $o

This prog triggers if the mob is given any item that responds to the

keyword 'pipeweed.'

Note If an item existed named 'pipeweed' that wasn't bread, and you

gave it to this mob, it would try to eat the item.
give_prog 3012

eat pipeweed

If you give this mob pipeweed bread (Vnum 3012) it eats it.

give_prog 3012

eat $o

If you give this mob pipeweed bread (Vnum 3012) it tries to eat 'bread,'

because the prog has assigned the text 'bread' to the mpvariable $o,

because 'bread' is Vnum 3012's first keyword. The pipeweed bread you

just gave it will be the first bread it finds in inventory, however. If you

give it any other bread, nothing will happen, because it only triggers on

the Vnum specific to pipeweed bread.
give_prog *

if vnum($o) == 3012

eat pipeweed

say Thanks!

else

give $o $n

say I don't want this.

endif

If you give this mob pipeweed bread (Vnum 3012) it eats it. If you

give it any other item, it gives it back to you and tells you why.

18

give_prog <pipeweed bread>

drop $o

This text string option is supported but not recommended. This

example prog will never fire, because it is searching for the 'exact

match' for 'pipeweed bread' in the object file's aliases, and object

3012's first alias is bread.

SPECIAL NOTE: These examples were valid when mobprogs were coded, and should still be valid training examples, but

there is NO EXCUSE for dropping untested mobprogs into the mud!

GREET_PROG/greet_prog

Greet: Tests the prog when a PC enters the mob's room. (Won't fire if the mob is in combat).

MPROG

Greet reacts when a PC enters the mob's room.

< > mpedit add greet <#> (# ranges from 1-100 but represents a range of 1-1000.)

Examples:
greet_prog 100

if isevil($n)

and race($n) == elf

and class($n) == cleric

say Wow, an evil elf cleric! I

thought I was the only one!

endif

if race ($n) != elf

and race($n) != half-elf

tell $n This is elven territory. You

really should leave.

endif

This tests every player who enters the mob's room, first to see if they

are evil AND an elf AND a cleric, comments to the room about it if

all 3 are true, then tests to see if each player is not an elf AND not a

half-elf and warns away each of those who is neither.

Note: The if/and combination only requires a single endif (unlike the

nested ifchecks).

Note: In this case, one combination of ifcheck is tested after the other

combination of ifchecks has been tested. (They aren't nested). Each

ifcheck or combination of them requires its own endif.

greet_prog 55

if isevil($n)

or isgood($n)

say Santa tells me you've been bad

or good!

Endif

40% of the times when a player enters the room the mob is in, it tests

whether the player is good OR is evil, and comments on it if either is

true.

Note: The if/or combination only requires the single endif (unlike the

nested ifchecks)

Note: If a group of 9 players entered this mob's room and none of

them were neutral-aligned, each of them would see the mob 'say' this

text string 9 times. This would probably not be considered good

design.

OPROG

Greet <%> triggrs when someone enters the room

< > opedit add greet <#> (# ranges from 1-100 but represents a range of 1-1000.)

HITPERCENT_PROG/hitprcnt_prog

Hitpercent: Tests the prog if the mob goes below the assigned % of maxhits.

19

MPROG

Hitpercent reacts when below the assigned % of maxhits.

< > mpedit add hitpercent <#> (# ranges from 1-100 but represents a range of 1-1000.)

Example:
hitpercent_prog 99

flee

mprestore $i

If this mob lost more than 15 per 1000 of its maxhits, it would flee

and fully restore itself. (Unless you killed it in one round or enjoyed

chasing it from room to room all over the mud, it would probably not

be considered good design.) Note: This is only checked while

fighting.

PULL_PROG/manip_prog

Pull: Triggers the prog when the items is manipulated.

OPROG

Pull <%> triggers when you pull/push/turn/press the item

< > mpedit add pull <#> (# ranges from 1-100 but represents a range of 1-1000.)

Example:
manip_prog 100

mpechozone 333 A large icy capsule

rises from the center of the

cathedral and hovers over the

northwest tower.

All the time, when the item is manipulated (push, pull, turn, press,

etc) it sends this message to all players in the zone.

PULSE_PROG/pulse_prog

Pulse reacts at an assigned pulse.

MPROG

Pulse reacts at an assigned pulse.

< > mpedit add pulse <#> (# ranges from 1-100 but represents a range of 1-1000.)

QCOMPLETE_PROG/qcomplete_prog

Qcomplete reacts when the quest is copleted.

MPROG

Pulse reacts at an assigned pulse.

< > mpedit add pulse <#> (# ranges from 1-100 but represents a range of 1-1000.)

20

RANDOM_PROG/rand_prog

Random: Tests each pulse against the assigned % chance of firing.

MPROG

Random reacts randomly, according to the assigned %.

< > mpedit add rand < # > (# ranges from 1-100 but represents a range of 1-1000.)

SPECIAL NOTE: The mud command mobprogpercent <#> will return the actual mobprog percent value for a given # (1-

100), so you don't have to do the math or consult a chart. The formula is [Y=X^1.5].

Note: A mobprog rand_prog 100 will fire every pulse. This is commonly used to test for specific ifcheck conditions, that

don't fall into the other mobprog types. The Random ifcheck can be used internally to set frequency limits.

Examples:
rand_prog 100

if playerspresent($i) >= 2

grumble

mpecho $I mutters, 'I want to be

alone.'

endif

The mud checks every pulse to see if 2 or more players are in the

room with the mob. If there are, the mob complains out loud about it.

rand_prog 40

if playerspresent($i) >= 2

hug $r

if rand(60)

kiss $r

endif

endif

This prog fires 25% of the time. When it does, it tests to see if 2 or

more players are in the room with the mob. If there are, the prog

picks one player at random and the mob hugs it. Then, 60% of the

time, the mob kisses the same player.

Note: This is a nested ifcheck, and each ifcheck requires its own

endif.

OPROG

Random <%> triggers at a random time

< > opedit add rand < # > (# ranges from 1-100 but represents a range of 1-1000.)

REMOVE_PROG/remove_prog

Remove <%> triggers when you remove the item

OPROG

< > opedit add remove < # > (# ranges from 1-100 but represents a range of 1-1000.)

SAC_PROG/sac_prog

Sac <%>: triggers when you sacrifice the object

OPROG

< > opedit add sac < # > (# ranges from 1-100 but represents a range of 1-1000.)

21

SPEECH_PROG/speech_prog

Speech: responds to speech, including say, tell, ask, whisper or emote, containing the keyword or text string. (Does not

respond to communication channels).

MPROG

Speech reacts to speech messages.

< > mpedit add speech <text string> (Note: No assigned %.)

Example:
speech_prog Open Sesame!

open gate

if sex($n) == male

whisper $n I wouldn't go in there,

bud!

endif

If the text string matches exactly, the mob opens the gate, then

whispers a warning to the player if he's male.

Note: The speech_prog argument (Open Sesame!, in this example) is

not case sensitive, but all punctuation does count. In this example, if a

player says 'Open Sesame!' the prog will trigger. If a player emotes,

'emote I think we have to emote open sesame! or something.', the prog

will also trigger. If a player whispers, Open sesame the prog will not

trigger, because the ! is missing.

OPROG

Speech: see mprog help for speech triggers (same syntax)

< > opedit add speech <text string> (Note: No assigned %.)

TIME_PROG/time_prog

Time: Tests the prog at a specific hour of the day.

(SPECIAL NOTE: Timeprog is very limited. I have specific ideas about improving it, there just hasn't been time to work

on it yet.)

MPROG

Time reacts at an assigned hour.

< > mpedit add time < # / * > (Note: No assigned %.)

is the hour of day or * is a wild card for any hour.

Examples:
time_prog 24

if iszoneempty($i)

shout Midnight, and all's well!

endif

This prog fires at midnight, then always tests to see if any players are in

the same zone as the mob, and shouts if there are none.

time_prog *

say Do you hear bells??

This mob whispers every hour.

(Note: * is supported as a 'wild card' for any hour.)

WEAR_PROG/wear_prog

22

Wear <%> triggers when you wear the item

OPROG

< > opedit add wear < # > (Note: No assigned %.)

VI BODY OPTIONS

MPVARIABLES

MPVARIABLES

$i mob doing the mobprog

$n person causing the trigger

$o object causing the trigger

$r random PC in the room

$t target PC

$p

Operators used in ifchecks for STRINGS:

 == checks for an exact string match

 != checks for not equals, or no match

 / checks to see if the specified string is contained in the target string

 !/ returns true if there is no match in the target string

Operators for MATH comparisons:

 == equality

 != not equals

 <= less than or equal to

 >= greater than or equal to

 > greater than

 < less than

 & bitwise AND

 | bitwise OR

IFCHECKS

MPIFCHECKS

If-checks are used in MOBPROGS to test certain targets for certain conditions, such as age, alignment, sex, position, vnum,

and many others. Common targets include $i, the mob itself; $o, an object; $n, the player who triggered the prog, and $r, a

random player in the room. MPVARIABLES determine the target of the ifcheck, as well as the target of the consequences.

(Numerical and String operators are also listed in Mpvariables.)

Typical usages: Examples:
if iswhatever($X) if isgood($r)

if iswhatever($X) >= <#> if hitpercent($i) <= 35

if iswhatever($X) / <text string> if name($n) !/ dragon

Multiple ifchecks:

You can use OR and AND in your ifchecks. They must appear on a new line.

Example:
 if dex($n) >= 25

 or level($n) >= 58

23

 bow $n

 endif

Note: Each ifcheck, or combination of ifchecks, must have an endif.

IFCHECKS

rand cansee isnpc ispc isimmort

isgood isneutral isevil isfighting ischarmed

isfollowing isgrouped ismounted isoutlaw ispthief

race sex position class name

inroom inzone vnum numfollowers hitpercent

manapercent movepercent gold qpoints age

level size clannum legendpoints nobpoints

str dex con wis int

cha luk hp mp vp

maxhp maxmp maxvp objtype objval(0-5)

playerspresent mobspresent iszoneempty mobhere objhere

carriesobj wearsobj hasobj timehour timeday

timemonth timeyear actortarget($t) mobtarget($t) cmd($n)

cmdarg

ACTORTARGET, MOBTARGET, OBJTARGET

actortarget($t): checks to see if assigned spell was targeted at the caster (i.e. did the player cast that particular spell

on himself, in the room with the mob).
Usage: if actortarget($t)

mobtarget($t): checks to see if the assigned spell was targeted at the mob
Usage: if mobtarget($t)

objtarget($o): checks to see if the target is an object

SPECIAL NOTE: The ifchecks actortarget($t), and mobtarget($t) are used in cast_progs. These are explored more fully in

the cast_prog examples under MPTRIGGERS. The variable $t is not currently assigned in any other progtype. Do NOT use

$t as an independent variable under any circumstances.

AFFECTEDBYSPELL

affectedbyspell(#): checks to see if the mob with the mprog is affected by a certain spell. The number is the spell

number. See the builder’s handbook for a list of the spells and their numbers.

AGE

age: returns age of target

CANSEE

cansee: returns true if the mob can see the target victim or object (for mobs who don't see invis, hidden, dark, etc.)

CARRIESOBJ, WEARSOBJ, HASOBJ

carriesobj: checks for a specific object in inventory

wearsobj: checks for a specific object in equipment

24

hasobj: checks for a specific object in inventory and equipment

Examples: Note: <Vnum> or <text>
 if hasobj($i) == 3005

 if wearsobj($n) == Dispater

CLANNUM, CLANRANK

clannum: returns clan number for PC's

clanrank: returns the PC’s clan rank number

CLASS

class: returns class of target
 if class($n)!= <text>

CMD, CMDARG, CMDQUEUELEN

cmdarg: checks extra command arguments entered when the prog was triggered
Usage: if cmdarg(#) <string-operator> <text>

Note: ' # ' represents which argument you want to test. ' 0 ' is the FIRST, ' 1 ' is the SECOND, etc.

Examples:
 if cmdarg(0) / sanc

 if cmdarg(2) !/ $n

 if cmdarg(0) == 'dispel

 if cmdarg(1) / magic

cmd($n): checks the command entered when the prog was triggered
Usage: if cmd($n) <string-operator> <text>

Examples:
 if cmd($n) == cast

 if cmd($n) !/ look

cmdqueuelen($i): checks the command queue to see how many commands are left
Usage: if cmdqueuelen($i) <string-operator> <text>

Example:
 if cmdqueuelen($i) < 6

SPECIAL NOTE: The ifchecks 'cmdarg' and 'cmd($n)' are ONLY available for use in command_progs. They are explored

more fully in the command_prog examples under MPTRIGGERS.

EXPLANATION:

For use in commandprogs (only), anything a player types is temporarily recorded, in the format: cmd($n) cmdarg(0)

cmadarg(1) cmdarg(2) cmdarg(3)... These stored commands and arguments can be tested (in commandprogs only). For

example, if a player typed cast 'protection from dea' doopw, the ifcheck if cmdarg(1) == from would return true. The

ifcheck if cmdarg(2) == death would return false, but the ifcheck if cmdarg(2) / de would return true, because 'de' is

contained in 'dea'. The ifcheck if cmdarg(0) == protection would return false, because the apostrophe counts as part of the

match. The entire text string cast 'protection from dea' doopw would be recorded in the mpvariable $C and the entire

argument text string 'protection from dea' doopw would be recorded in the mpvariable $c.

25

SPECIAL NOTE: commandprog/cmd/cmdarg are useful for specific tests like a mob responding to having 'dispel magic'

cast at it, but they are also highly vulnerable to careless design and unpredicted results. BUILD WELL! TEST!! TEST!!

TEST!! TEST!! TEST!! TEST!! TEST!! There is NO EXCUSE for dumping untested mobprogs into the mud.

EXTRA SPECIAL NOTE: commandprog, and these examples, were developed before castprog was coded. Castprog is

much better for handling spells!

DRUNK, HUNGRY, INSANE, STONED, THIRSTY, WIRED

isdrunk: true if drunk greater than 0

ishungry: true if hungry is at 0

isinsane: true if insane greater than 0

isstoned: true if stones greater than 0

isthirsty: true if thirsty is at 0

iswired: true if wired greater than 0

GOLD

gold: returns gold of target

HIT, MAX HIT, HIT %, MANA, MAX MANA, MANA %, MOVE, MAX MOVE, MOVE %

hp, mp, vp: returns current h/m/v for target

maxhp, maxmp, maxvp: returns max h/m/v for target

hitpercent:

manapercent:

movepercent: returns current h/m/v percent of target
 if hitpercent($n) >= 75

INOBJ, INROOM, INZONE

inroom: returns current room vnum of target
 if inroom($n) == 3001 Note: Numeric only.

inzone: returns current zone number of target
 if inzone($i) == 32 Note: Numeric only.

inobj: returns if the item is inside another item

 if inobj(#) == 32 Is item # inside item 32? Note: Numeric only.

ISCHARMED

ischarmed: true if target is charmed

ISEXITCLOSED, ISEXITLOCKED

26

isexitclosed(#): true if the exit in the direction indicated is closed. The number is based on the direction number. 0

for north, 1 for east, etc. See the builder’s manual under Exits for direction numbers.

isexitlocked(#): true if the exit in the direction indicated is locked. The number is based on the direction number. 0

for north, 1 for east, etc. See the builder’s manual under Exits for direction numbers.

ISFIGHTING

isfighting: true if target is in combat

ISFOLLOWING, ISLEADER

isfollowing: true if the mob is following the target $n
 if isfollowing($n)

isleader: true if the mob checked ($n) is solo or the leader of a group
 if isleader($n)

ISGOOD, ISEVIL, ISNEUTRAL

isgood: true for good aligned targets

isneutral: true for neutral aligned targets

isevil: true for evil aligned targets

ISGROUPED

isgrouped: true if the target is a group member.

ISMOUNTED

ismounted: true if target is mounted

ISNPC, ISPC, ISIMMORT

isnpc: only true for mobs

ispc: only true for real players

isimmort: true if target is a god PC

ISOUTLAW

isoutlaw: true for outlaws

ISQUESTEDBYMOB

isquestedbymob: true if the PC is on a quest and the mob specified is the quest mob

ISPTHIEF

ispthief: true for pthieves

27

ISZONEEMPTY, MOBSINZONE

iszoneempty: returns true if the zone has no PC's present

 if iszoneempty($i / #) ($i) specifies the zone the mob is in

 (#) specifies a zone number

mobsinzone: returns true if the specific mob is in the zone

 if mobsinzone(#) (#) specifies a specific mob number

LEGENDPOINTS or HEROPOINTS, NOBPOINTS or NOBLEPOINTS

legendpoints: returns current number of legend or hero points for PC's

nobpoints: returns current number of nobility points for PC's account

Note: nobpoints for a PC below level 50 always returns 0 (zero).

LEVEL

level: returns level of target

MOBHERE, MOBZONE

mobhere: checks for a specific mob in the room Note: <Vnum> or <text>

Example:
 if mobhere(13201)

 say Hey, its the meta sage guard!

 endif

mobzone: returns current zone number of the mob
 if mobzone($n) == 32 Note: Numeric only.

MOBSPRESENT

mobspresent: returns the number of NPC's in the room (the mob counts itself)

Supports ($i) for the mob's current room, or (roomVnum) for a specified room

MOBNEXIST, OBJNEXIST

mobnexist: checks for a specific mob in the world Note: <Vnum> or <text>

Example:
 if mobnexist(13201) > 0

objnexist: checks for a specific obj in the world Note: <Vnum> or <text>

Example:
 if objnexist(13201) > 0

NAME

name: returns name of object or person
 if name($n) / <text>

Note: The / operator returns true if the text is part of the target's name.

Example:

 if name($n) / dragon

28

 smirk $n

 endif This mob would smirk at a player named Pendragon, Dragonsbane,

RedDragonBelt, etc.

NUMFOLLOWERS

numfollowers: returns the player's total number of followers
 if numfollowers($n) <= 9

Note: This returns 'followers,' not 'group-members.' A player might have a number of ungrouped charmed beasts or

familiars technically following him, but not grouped. This would count them.

OBJHERE, OBJSINZONE

objhere: checks for a specific object in the room Note: <Vnum> or <text>

Example:
 if objhere(identify)

 say Who left an identify scroll here?

 endif

objsinzone: returns true if the specific object is in the zone

 if mobsinzone(#) (#) specifies a specific object number

OBJTYPE

objtype: returns object type number Note: Numeric only

 if objtype($o) == 1 true if object is a LIGHT (object type 1)

See Builder’s Handbook for object type numbers.

OBJVAL 0 TO 5

objval0 - objval5: returns val0 through val5 of target object

 if objval2($o) <= 0 Note: Numeric only

See Builder’s Handbook for object values.

PLAYERSPRESENT

playerspresent: returns the number of PC's in the specified room, or the mob's current room

Usage:

 if playerspresent($i) >= <#> Returns true if more than ' # ' PC's are in the mob's current room

 if playerspresent(Vnum) == <#> Returns true if exactly ' # ' PC's are in the specified room

POSITION

position: returns position of target
 if position($i) == <text>

QPOINTS

qpoints: return qpoints of target

29

RACE, SEX

race: returns race of target
 if race($n) ==<text>

sex: returns sex of target
 if sex($n)!=<text>

RAND, RANDOMNUM

rand: it rolls a random number 1-100 and if the number is less than the specified number it triggers the if statement.

 if rand(75) true 75% of the time

While Randomnum is an option it doesn’t appear to do anything. Use rand when wanting something to trigger a certain

percentage of the time.

SIZE

size: returns size of target obj, player, or mob

STRENGTH, DEXTERITY, CONSTITUTION, WISDOM, INTELLIGENCE, LUCK, CHARISMA

str, int, wis, dex, cha, con, luk: returns the chosen stat value

Example:
if luk($n) >= 6

TIMEHOUR, TIMEDAY, TIMEMONTH, TIMEYEAR

timehour:

timeday:

timemonth:

timeyear: checks for a specified year/month/day/hour
Usage:

 if time(X) <numerical operator> <#>

Examples:
 if timemonth > 6

 if timehour != 12

 and timehour >= 8

 if timehour == 2

VAR

var: returns the mprogvar number
 if var($i) == 8

Use this with MPVAR to set the mpprogvar.

VNUM

vnum: returns vnum of object or mob
 if vnum($o) == 3000 Note: Numeric only.

30

MPCOMMANDS

MPCOMMANDS

mpareadamage mpasound mpat mpcoins mpdamage

mpdamagearound mpdelay mpdoor mpecho mpechoaround

mpechoat mpechozone mpforce mpflush mpgive

mpgorandom mpgoto mpjunk mpkill mpmload

mpoload mpopen mppurge mpqend mpqstart

mprestore mproom mpset mpsetskill mpstat

mptransfer mptrigger mpvar mpvpurge mpzreset

opstat optrigger silently

These are the special 'prog only' commands that you can give your mobs within mprogs or objects within oprogs. Mobs can

also execute any normal player commands (bow, give, put, pose, drop, fart, south, etc.)

MPASOUND

mpasound Sends text to all adjacent rooms

Usage: mpasound <text string>

MPAT

mpat allows the mob to perform an action in a different room

Usage: mpat <roomVnum> <command> [parameters]

Examples:
 mpat 12472 mpecho You hear screeching in the distance.

 mpat 3001 yell Where am I?

 mpat 8702 pull lever

 mpat 16028 mppurge

MPCOINS

mpcoins loads a specified number of coins on the mob

Usage: mpcoins <#>

MPDAMAGE, MPAREADAMAGE, MPDAMAGEAROUND

mpdamage damages a target (damage must be in the exact form: XdY+Z)

Usage: mpdamage <$X / text> XdY+Z

Examples:
 mpdamage $n 12d40+112

 mpdamage guard 4d6+12

mpareadamage damages every PC in the room

Usage: mpareadamage XdY+Z

31

mpdamagearound damages every PC in the neighboring rooms

Usage: mpdamagearound XdY+Z

MPDELAY

mpdelay delays the target for the specified number of pulses

Usage: mpdelay <$X / room> <#>

Examples:

 mpdelay $i 2 delays the mob for 2 pulses.

 mpdelay $n 20 delays the player who triggered the prog 20 pulses.

 mpdelay room 4 delays the entire room.

MPDOOR

mpdoor manipulates a door in a certain direction

Usage: mpdoor <$X / room> <direction> <open/closed/unlocked/locked/wizlocked>

MPECHO, MPECHOAT, MPECHOAROUND, MPECHOZONE

mpecho sends text to everyone in the same room as the mob

Usage: mpecho <text string>

Note: Mpecho with no text can be used to insert a blank line in the output.

Note: Similarly, the variable $\ will insert a carriage return, so that your output moves to the next line.

mpechoat sends text to a specific person

Usage: mpechoat <$X / text> <text string>

mpechoaround sends text to everyone in a room except the mob and target

Usage: mpechoaround <$X / text> <text string>

mpechozone sends text to everyone in a zone except the mob and target

Usage: mpechozone <$X / text> <text string>

MPFLUSH

mpflush flushes all pending mob commands from its command queue

Usage: mpflush

Note: This can be useful if you want a mob to immediately stop what it's doing and do something else, particularly if it has

a lot of commands with delays.

MPFORCE

mpforce allows the mob to force another mob or a player to do something

32

Usage: mpforce <$X / text> <command> [parameters]

Examples:
 mpforce $n give 1000 coins $i

 mpforce king order followers kill $n

 mpforce ringbearer mpjunk all

 mpforce $r sneeze

Note: The target must be in the same room as the mob, lower level, and visible.

MPGIVE

mpgive gives an item to victim

Usage: mpgive <item> <name>

MPGOTO, MPGORANDOM

mpgoto lets a mob goto a different room

Usage: mpgoto <roomVnum>

mpgorandom lets a mob goto a random room from a list

Usage: mpgorandom <roomVnum> <roomVnum>

MPJUNK

mpjunk sacrifices an item, or 'all' items

Usage: mpjunk <text / all>

Note: This works on worn gear as well.

MPKILL

mpkill attacks the specified target

Usage: mpkill <$X / text>

Note: This fails if the mob is already fighting, or when trying to attack its master if the mob is charmed.

MPMLOAD, MPOLOAD

mpmload loads a mob with the specified vnum

Usage: mpmload <vnum> <maxexist>

Note: If there are already maxexist number of this mob in the game, it will not load. It will always load if no maxexist is

specified but be limited to 5 max.

mpoload loads an object with the specified vnum

Usage: mpoload <vnum> <maxexist>

33

Note: If there are already maxexist number of this object in the game, it will not load. It will always load if no maxexist is

specified.

Note: The object loads in the mob’s inventory. To load an object in the room, have the mob silently drop <item / vnum>.

MPOPEN, MPCLOSE

mpopen opens a door as if an immortal (through wizlock)

mpclose close and wizlock a door/object

MPPURGE, MPVPURGE

mppurge purges an existing mob or object in the room, or 'all' mobs and items

Usage: mppurge <text / all>

 Mppurge $i

Note: mppurge all does not purge the mob itself.

mpvpurge purges a mob or object in the room by item number

Usage: mpvpurge <mob / obj> <#>

MPQSTART, MPQEND

mpqstart starts a quest

mpqend end the quest

MPRESTORE

mprestore restores the target

Usage: mprestore <$X / text>

Examples:
 mprestore $n

 mprestore doopwinkle

Note: The target must be in the room with the mob.

MPROOM

mproom allows the mob to do commands similar to rset.

Example:
 mproom exit up connect 2 1200

 mproom exit w delete

MPSET

mpset sets a target's h/m/v, gold, or stats

Usage: mpset <$X / text> <h/m/v/stat> <#>

34

Examples:
 mpset $n hitpoints 6

 mpset $i gold 1000

 mpset SirAngel movepoints 0

 mpset guardian dex 4

 mpset $n str 29

Note: The target must be in the room with the mob.

Note: Set stats for PCs are temporary, until their next logout/in. Even so, this should be used cautiously, if at all.

mpset position <#>

mpset defaultpos <#> sets a mob’s default position

mpset hitpoints <#> sets hit points

mpset manapoints <#> sets mana points

mpset movepoints <#> sets movement points

mpset drunk <#> sets drunk

mpset insane <#> sets insane

mpset sex <#> sets the sex.

mpset addact <#> sets a specific action flag

mpset remact <#> removes a specific action flag

mpset addaff <#> sets a specific affect

mpset remaff <#> removes a specific affect

mpset str <#> sets strength

mpset dex <#> sets dexterity

mpset con <#> sets constitution

mpset int <#> sets intelligence

mpset wis <#> sets wisdom

mpset cha <#> sets charisma

mpset luck <#> sets luck

mpset gold <#> sets gold

Usage: mpset position <#>

 mpset defaultpos <#> Note: Numeric only.

(Special note: You must use the position values from OLC, or from the Builder's Handbook v2.0 or later, (or the latest

version of the handbook, when this reference becomes obsolete or dated).

MPSETSKILL

mpsetskill enables specific skills/spells you want the mob to be able to use

Note: Mob disposition enables certain skills/spells for certain classes. This allows you to add almost any skill/spell to those,

allows cross-class skills/spells, and allows mobs with no disposition set to use skills/spells that you choose.

Note: This can be done in any mobprogtype, but is typically done in a birthprog, so that the mud only executes this when

the mob is loaded.

Note: If your mob has no mana, it won't cast assigned spells very efficiently.

Usage: mpsetskill < 'skill name' > < % >

Note: 'skill name' identifies the skill/spell by text name, the apostrophes are needed. % is the mob's actual chance of

casting/performing the spell/skill.

35

Note: The mobprogmob assigns skills/spells to itself. There is no other option.

Examples:
 mpsetskill 'first aid' 92

 mpsetskill 'sanctuary' 45

 mpsetskill 'protection from death' 84

MPSTAT, OPSTAT

mpstat helps identify the mob and gives its basic condition. Shows mobprograms that are set.

Returns: programs set, name, v number, short description, hit, max hit, mana, max mana, stam, max stam, level,

class, alignment, AC, gold, and experience.

opstat helps identify the object and gives its basic condition. Show oprogs that are set.

Returns: programs set, name, v number, and short description

MPTRANSFER

mptransfer transfers a specified player or mob to a specified room

Usage: mptransfer <$X / text / mobVnum> <roomVnum | here>

Text can be a name, allplayers or group.

Note: mptransfer <text> means a one-word name, text strings are not supported.

Note: With <text> or <vnum>, the prog looks for a target in the room that matches, then looks for a match anywhere in the

mud, starting with the most recently loaded mob. With a common name, (such as 'guard'), this could produce unpredictable

results.

MPTRIGGER, OPTRIGGER

mptrigger this command triggers a particular mprog of another mob

optrigger this command triggers a particular oprog

Usage: mptrigger <mobVnum> <prognumber>

Note: You can think of this as one mob forcing some other mob to do something very complicated.

Note: You can mptrigger a rand_prog 0 prog, and the mob will perform the checks and execute the actions listed in it.

There would be no other way for that prog to be triggered, since it fires zero percent of the time. Progs that are only

triggered are easier to spot while debugging if they fire at 0%.

Note: Mptrigger is very rarely the best way to accomplish something.

SPECIAL NOTE: Mptrigger also works as a godcommand, for debugging and testing purposes. (Same syntax.)

MPVAR

mpvar sets mprogvar to some value

For use with the ifcheck var

MPZRESET

36

mpzreset this command resets a particular zone

Usage: mpzreset <zone #>

Note: This should not be used carelessly or on the zones of others.

SILENTLY

silently allows mobs to execute commands without sending text to the room

Usage: silently <command> [parameters]

XIV QUICK REFERENCE

MPTRIGGERS

Act reacts to action messages.

Allgreet reacts when a PC or an NPC enters the mob's room.

Attack reacts when a mob begins fighting a new target.

Birth reacts when the mob is loaded into the mud.

Bribe reacts when the mob is given coins.

Cast reacts if a PC casts the assigned spell in the mob's room.

Command reacts to commands typed by players.

Death reacts when the mob dies.

Entry reacts when the mob enters a room.

Fight reacts during fights.

Give reacts when the mob is given an item.

Greet reacts when a PC enters the mob's room.

Hitpercent reacts when below the assigned % of maxhits.

Pulse reacts at an assigned pulse.

Random reacts randomly, according to the assigned %.

Speech reacts to speech messages.

Time reacts at an assigned hour.

Position Not implemented. Reacts to a mob position. Pos_prog.

Qcomplete reacts when the quest is finished

OPTRIGGERS

Attack triggers when the object is used to attack

Birth triggers when the object is loaded into the mud

Command see mprog help for command triggers (same syntax)

Drop triggers when you drop the item

Fight checks every combat pulse

Get triggers when you get the object

Greet triggers when someone enters the room

Pull triggers when you pull/push/turn/press the item

Random triggers at a random time

Remove triggers when you remove the item

Sac triggers when you sacrifice the object

Speech see mprog help for speech triggers (same syntax)

Wear triggers when you wear the item

Act Not implemented. see mprog help for act triggers (same syntax)

Close Not implemented. triggers when an object is closed. Close_prog

Damage Not implemented. triggers when an object takes damage. Damage_prog

Enter Not implemented. triggers when an object is entered. Enter_prog

Examine Not implemented. triggers when look or examine the item. Exa_prog

37

Open Not implemented. triggers when the object is opened. Open_prog

Repair Not implemented. triggers when you repair the object. Repair_prog

Use Not implemented. triggers when you use the item. Use_prog

IFCHECKS

rand cansee isnpc ispc isimmort

isgood isneutral isevil isfighting ischarmed

isfollowing isgrouped ismounted isoutlaw ispthief

race sex position class name

inroom inzone vnum numfollowers hitpercent

manapercent movepercent gold qpoints age

level size clannum legendpoints nobpoints

str dex con wis int

cha luk hp mp vp

maxhp maxmp maxvp objtype objval(0-5)

playerspresent mobspresent iszoneempty mobhere objhere

carriesobj wearsobj hasobj timehour timeday

timemonth timeyear actortarget($t) mobtarget($t) cmd($n)

cmdarg

MPCOMMANDS

mpareadamage mpasound mpat mpcoins mpdamage

mpdamagearound mpdelay mpdoor mpecho mpechoaround

mpechoat mpechozone mpforce mpflush mpgive

mpgorandom mpgoto mpjunk mpkill mpmload

mpoload mpopen mppurge mpqend mpqstart

mprestore mproom mpset mpsetskill mpstat

mptransfer mptrigger mpvar mpvpurge mpzreset

opstat optrigger silently

MPVARIABLES

 $n person causing the trigger

 $i mob doing the mobprog

 $r random PC in the room

 $t target PC

 $o object causing the trigger

Operators used in ifchecks for STRINGS:

 == checks for an exact string match

 != checks for not equals, or no match

 / checks to see if the specified string is contained in the target string

 !/ returns true if there is no match in the target string

Operators for MATH comparisons:

 == equality

 != not equals

 <= less than or equal to

 >= greater than or equal to

 > greater than

 < less than

 & bitwise AND

 | bitwise OR

38

MPEDITING

Editing the HEADER

list list all mprogs for the mob you are medit-ing

save save current mprog changes to .mob file

done exit the mpeditor and the meditor without saving

edit edit the command list of an existing mprog

delete delete a mprog from the list

copy copy a mobprog from another mob

insert insert a mprog in the list

add add a mprog to the end of the mprog list

header replace a mobprog header completely

Editing the BODY

 /? on-line editor help (inside the editor)

XV CREDITS

Upgrades and Improvements

DATE VERSION EDITED BY DATE VERSION EDITED BY

Sept 1, 2019 1 (Kallisti) Ivy

This version of the Mprog Handbook is created for Kallisti MUD/Legends of Kallisti, version 5.0.

If there are any questions about this document, please email the Admin list: imms@kallistimud.com or contact the

administration.

If you do not have access to the Builders list, please contact the Immortals at Legends of Kallisti MUD. (c) Copyright 1997,

2009, 2019 by KallistiMUD and Legends of Kallisti MUD.

ALL RIGHTS RESERVED WORLDWIDE

html special chars - php

cross site scripting

mailto:builders@legendsofkallisti.com

